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Abstract

Background and purpose

A proportion of individuals recovering from COVID-19 continue to experience per-
sistent symptoms, including fatigue and cognitive difficulties — a syndrome com-
monly referred to as Post-COVID condition (PCC), which affects an estimated 2—10%
of cases. In this study, we evaluated cerebral blood flow (CBF) to better understand
the pathophysiological mechanisms underlying PCC.

Materials and methods

In this prospective, monocentric study, we analyzed clinical and cerebral blood flow
(CBF) data from a cohort of 55 patients who met the WHO diagnostic criteria for
Post-COVID condition (PCC) and underwent MRI approximately 11 months after

a positive PCR test for SARS-CoV-2. These PCC patients were compared to a
matched control group of 36 individuals who had contracted COVID-19 but did not
develop PCC. CBF was assessed using arterial spin labeling (ASL), a promising
non-invasive technique that provides high spatial resolution for quantifying cerebral
blood flow. Additionally, we examined changes in gray matter volume and atrophy
using FreeSurfer-based cortical morphometry. We further explored the relationship
between regional CBF alterations and clinical symptoms, including cognitive and
olfactory function, as well as fatigue.
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Results

In our cohort, 59% of PCC patients could not return to their previous level of indepen-
dence or employment due to symptoms, and 81% reported fatigue on the WEIMuS
questionnaire. Conventional MRI showed no evidence of cortical atrophy. While no
significant differences in regional CBF emerged after FDR correction, a more explor-
ative threshold (p<0.005) revealed reduced CBF in the right angular and middle
occipital gyri in PCC patients. Fatigue, as assessed by the WEIMuS, was significantly
correlated with reduced CBF in the right occipital regions, particularly for physical
fatigue, but no associations were found with cognitive or olfactory performance.

Conclusion

In PCC patients, fatigue was associated with reduced perfusion in right-sided occip-
ital regions, suggesting a potential pathophysiological basis for this symptom. These
findings may also provide an imaging biomarker to aid in the diagnosis of PCC.

Introduction

According to World Health Organization criteria, Post-COVID Condition (PCC) is
diagnosed when individuals with a history of confirmed or probable SARS-CoV-2
infection experience persistent symptoms—such as fatigue or cognitive difficul-
ties—that impair daily functioning for at least two months and begin no sooner than
three months after the acute iliness [1]. Based on this definition, a total of 2—10% of
COVID-19 survivors develop PCC [2,3]. This frequently progresses into a chronic
condition, as 85% of patients reporting complaints two months after COVID-19, still
reported symptoms — primarily fatigue, persistent impairment of olfaction and deficits
in attention and memory occur — one year after initial symptom onset [4,5]. A sub-
stantial portion of individuals with PCC report ongoing limitations in their professional
and personal lives, with estimates suggesting that up to 39% experience work-related
restrictions, highlighting the condition’s broader societal impact [6]. Nonetheless, the
pathophysiology underlying neurocognitive deficits is poorly understood and estab-
lished biomarkers are lacking.

Arterial spin labeling (ASL) is an MRI-based method for assessment of cerebral
blood flow (CBF) by magnetically labeling protons in inflowing arterial blood prior
to their entry into brain tissue [7]. Thus, ASL provides quantifiable CBF-maps in a
few minutes, without relying on exogenous contrast agents [8]. As there is a strong
association between local CBF and glucose metabolism in the brain [9], ASL is an
established measure of functional integrity and the physiological state in patients
with epilepsy [10], neurodegenerative [11,12] or neoplastic diseases of the brain
[13]. Although the ASL technique has already been used to study brain changes in
COVID-19 survivors [14,15], data from patients diagnosed with Post-COVID condition
according to the WHO definition are sparse. ASL was utilized to reveal an associa-
tion between impaired olfaction and orbitofrontal hypoperfusion [16] and in a “long
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COVID” cohort that was not defined according to WHO criteria, a link between reduced CBF in left frontal-temporal gyrus
with both fatigue and worse cognition [17].

Motivated by these findings, we investigated CBF using ASL in a prospective monocentric cohort of PCC patients diag-
nosed according to the WHO criteria. PCC patients were compared to a cohort of subjects that had contracted COVID-19
without lasting symptoms. We further investigated the association between regional CBF profiles and clinical symptoms,
i.e., cognitive and olfactory performance or fatigue.

Methods
1. Study participants and clinical outcomes

We report data from a monocentric, prospective cohort of 55 patients (median age 39 [23] years; range: 19-70 years;

37 females), who were admitted to the outpatient clinic of the Department of Neurology and Clinical Neuroscience of

the University Hospital Freiburg between June 16", 2020 and October 6™, 2022 due to neurocognitive symptoms in the
chronic phase after a COVID-19 infection. This cohort has a substantial overlap with a previously published study that
revealed widespread microstructural alterations in both COVID-19 survivors and patients with PCC [18]. The local ethics
committee approved this study (EK 211/20) and all subjects provided written informed consent in accordance with the
Declaration of Helsinki and its later amendments. Inclusion criteria were: 1) reverse transcription polymerase chain reac-
tion (rt-PCR) confirmed SARS-CoV-2 infection; 2) meeting the diagnostic framework outlined by the World Health Orga-
nization (WHO) for Post-COVID Condition, which includes symptoms persisting for more than two months and starting at
least three months after the initial infection [1]; 3) execution of a cranial MRI without artifacts hampering the evaluation of
ASL. Exclusion criteria were any pre-existing neurodegenerative disorders and age <18 years. A collective of 36 individ-
uals (median age 44 [22.5] years; range: 25-62 years; 24 females) in the chronic phase after PCR-confirmed COVID-19
infection who did not develop PCC or report persistent symptoms served as control group. PCC-patients and subjects of
the control group were examined and surveyed by board-certified (JH and SF) or experienced (> 7 years of training, NS)
neurologists, including a detailed patient history and assessment of current neurological symptoms as self-reported.. The
degree of current disability was graded as follows: 0, no relevant restrictions; 1, relevant restrictions but able to work; 2,
reduction of work quota necessary; 3, inability to work and/or restriction of daily life activities. Disease severity during the
acute stage was scored according to a modified version of the German definitions [19]: 1, no signs of pneumonia; 2, pneu-
monia, outpatient treatment; 3, pneumonia, inpatient treatment; 4, acute respiratory distress syndrome (ARDS), endotra-
cheal ventilation at intensive care unit (ICU). Disease severity was considered to be “mild” in case of outpatient treatment
(i.e., 1-2) and as “severe” in patients that required hospitalization (i.e., 3—4). Cognitive functions were assessed with the
German version of the Montreal Cognitive Assessment (MoCA version 7.1, www.mocatest.org) [20]. The highest possible
global MoCA score is 30 with higher scores indicating better performance, the cut-off score for cognitive impairment was
defined as < 26 [20]. Correction for years of education (YoE) was performed (+1 point in case of < 12 YoE). Fatigue was
evaluated using the Wirzburg Fatigue Inventory in Multiple Sclerosis (WEIMuS) [21], a self-rating questionnaire for symp-
toms of physical and cognitive fatigue. In addition, the Geriatric Depression Scale-15 (GDS) [22] was surveyed. Olfac-
tion was assessed using Burghart-Sniffin’-Sticks® (Burghart Messtechnik GmbH, Wedel, Germany) (normosmia: 11-12
correctly identified odors; hyposmia: 7—10 correct odors; anosmia: <6 correct odors) [23]. Ammonium was used to assess
trigeminal function.

2. Cerebral MRI

MRI acquisition and calculation of cerebral perfusion parameters. MRI was performed with a 3 Tesla scanner
(MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-channel head and neck coil. T1-weighted
(T1w) images were acquired with a three-dimensional (3D) magnetization-prepared 180° radio-frequency pulses and rapid
gradient-echo (MP-RAGE) sequence (repetition time: 2500 ms, echo time: 2.82ms, flip angle: 7°, TI=1100ms, GRAPPA
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factor=2, 1.0 mm?3 isotropic voxels, 192 contiguous sagittal slices). Time-encoded pseudo-continuous ASL (pCASL) was
acquired with a sequence based on the free lunch approach with Hadamard-encoding [24] and background suppression.
Thirty-two 3-mm slices were acquired with FOV =256 mm, matrix size=128x 128, TE/TR=22.5/4500ms, GRAPPA=2.
The labeling plane was positioned inferior to the center of the imaging slab with a labeling duration of 1800 ms and post-
labeling delay (PLD) of 200ms. For each participant, the labeling plane offset of the pCASL sequences was adjusted
(90-125mm from the center of the imaging slab) to ensure the vessels were perpendicular to the labeling plane [25]. Two
equilibrium magnetization images (MO) with right-left and left-right phase-encoding were acquired to convert perfusion-
weighted images into physiological units of blood flow. Data processing was implemented on a local instance of the post-
processing platform NORA (www.nora-imaging.org). Acquired data was motion corrected using SPM12 (Wellcome Centre
for Human Neuroimaging, London, UK). Data was then decoded according to the Walsh-Matrices [26]. With the decoded
data and the MO maps, absolute CBF maps were calculated using the Oxford ASL toolbox (https://asl-docs.readthedocs.
io/en/latest/oxford_asl.html) including Bayesian Inference for Arterial Spin Labelling MRI (BASIL) [27]. Subsequently,

CBF maps were normalized by dividing each voxel’s value with the mean CBF of the patient’s whole brain. T1w imaging
datasets were automatically segmented into white matter, gray matter and cerebrospinal fluid (CSF) using CAT12 (http://
www.neuro.uni-jena.de/cat/) and CBF images were co-registered to the T1w images. Validity of co-registrations between
ASL images and T1w-derived tissue probability values (TPV) were manually confirmed. Further quality control was
performed by visually inspecting each individual CBF map and CAT12 segmentation. The diffeomorphic warp was used to
transfer the quantitative normalized CBF maps to the Montreal Neurological Institute (MNI) space. Here, CBF values were
read after parcellation according to the Automated anatomical labelling atlas 3 (AAL3) [28]. The FreeSurfer pipeline was
employed to obtain information on cortical thickness, surface area, and gray matter volume. Derived data was parcellated
according to the Desikan-Killiany atlas (DKT) [29].

3. Statistical analysis

Statistical analyses were performed using R (https://www.R-project.org/) and SPSS version 25 (IBM, Ehningen, Ger-
many). Shapiro-Wilk test was used to assess normal distribution of data. In case of normal distribution, data were indi-
cated as mean (standard deviation) and t-tests were used for group-comparisons. If data were not normally distributed,
data were indicated as median [inter quartile range] and nonparametric Mann-Whitney-U-tests were applied. Correlations
between clinical data were assessed with Spearman’s rank correlation test, Bonferroni-correction was applied to account
for multiple testing. We assessed group-level CBF differences using analysis of covariance (ANCOVA), adjusting for age
and sex as confounding variables. The False Discovery Rate (FDR) was applied to correct for multiple comparisons. To
investigate associations between the CBF in PCC-patients and clinical scores, we employed mixed linear models while
controlling for “age” and “sex” and subsequent FDR-correction to account for multiple comparisons.

Results

We report MRI data of a cohort of 55 patients (age 39 [23] years; range: 19-70 years; 37 females) fulfilling the WHO's
diagnostic criteria for Post-COVID-Condition (PCC-group). This sample is a subset of a previous publication on micro-
structural cerebral alterations in individuals with PCC [18]. Demographics and clinical characteristics are listed in Table 1
and Table 2. Neurological examinations revealed no focal deficit. Patients most frequently reported fatigue, attention and
memory disturbances, and difficulties with language and multitasking—symptoms which significantly impacted their cog-
nitive functioning. Regarding MoCA performance, 17 of 54 patients (31%) performed below the cut-off score for cognitive
impairment [20]. Olfactory performance was impaired in 31 of 55 patients (56%). 43 of 53 patients (81%) revealed overall
symptoms of fatigue in WEIMuS. On a subscore level 77% (n=41) were above the cutoff for mental and 72% (n=38)
above the cutoff for physical fatigue. The GDS-15 indicated no relevant level of depression in the PCC-cohort on group-
level, although 13 patients (25%) exceeded the cut-off value. Between the parameters current disability, disease severity,
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Table 1. Demographics and comorbidities of study participants.

Post-COVID-Condition
(PCC; n=55)

Control Group (n=36)

Demographic data n (%) or median [IQR]; range (%) or median [IQR]; range P-value
Age (years) 39 [23]; 19-70 44 [22.5]; 25-62 0.95"
Sex (male/ female) 18 (32)/ 37 (68) 12 (33)/ 24 (67) 0.692
A positive PCR - cMRI (days) 319 [194]; 90-975 227 [175]; 145-943 0.29'
Comorbidities n (%) n (%)

Adipositas 2 (4%) 3 (8%)

Asthma/COPD 3 (6%) 1 (3%)

Coronary heart disease 0 (0%) 1 (3%)

Diabetes 7 (13%) 0 (0%)

History of depression 5 (9%) 2 (5%)

Hypocholesterolemia 3 (6%) 1 (3%)

Arterial hypertension 6 (11%) 4 (11%)

Hypothyreosis 6 (11%) 6 (17%)

Migraine 3 (11%) 1 (3%)

Obstructive sleep apnoea 1 (2%) 0 (0%)

Peripheral arterial occlusive disease 1 (2%) 0 (0%)

Restless legs syndrome 1(2%) 0 (0%)

Rheumatoid arthritis 1(2%) 0 (0%)

1 Mann-Whitney-U test; 2 X?-test.

https://doi.org/10.1371/journal.pone.0335038.t001

MoCA-performance, WEIMuS, olfactory performance, and GDS-15, the following significant associations were present:
WEIMuS was correlated with current disability (P<0.001; Spearman’s Rho: 0.78) and GDS-15 (P<0.001; Spearman’s
Rho: 0.76) and inversely with olfactory performance (P=0.004; Spearman’s Rho: —0.38). In addition, current disability
was associated with GDS-15 (P<0.001; Spearman’s Rho: 0.63). Furthermore, 36 individuals (age 44 [22.5] years; range:
25-62 years; 24 females) with passed COVID-19 infection but without lasting subjective impairment were enrolled as
control group. Detailed demographic and clinical information is provided in Tables 1 and 2. Compared to the PCC-group,
no significant differences were present for age, sex, the delay between positive PCR and imaging, severity of acute
COVID-19 and MoCA-performance (all P>0.05). Regarding clinical readouts, controls performed significantly better in
olfactory testing (Mann-Whitney-U, P=0.01) and were significantly less affected in GDS-15 (Mann-Whitney-U, P<0.001)
and WEIMuS (t-test, P<0.001). Cortical morphometric analyses using FreeSurfer [30]did not indicate measurable volume
loss or thinning across cortical regions when compared to controls. Moreover, we did not note a significant association of
structural parameters with PCC-related symptoms (i.e., MoCA-performance, olfaction, and WEIMuS scores). In summary,
structural MRI did not reveal alterations explaining the neurological symptoms.

With respect to the whole brain CBF, no group difference was present between PCC-patients and controls (F(1) = 2.13,
P=0.13; ANCOVA with nuisance covariates “age” and “sex”). Also in region-wise comparisons using ANCOVAs with nui-
sance covariates “age” and “sex”, no significant region remained after FDR-correction for multiple comparisons. However,
by applying a more liberal and explorative threshold of P<0.005, there seems to be a trend for a CBF-reduction for the
right angular gyrus (uncorrected P=0.0015) and in the right middle occipital gyrus (uncorrected P=0.0035; Fig 1). To
investigate associations between the CBF in PCC-patients and clinical scores, we performed region-wise partial Spear-
man’s rank correlation tests with nuisance covariates “age” and “sex” and FDR-correction to account for multiple compari-
sons. Here, significant associations were present between CBF-reduction in the right middle (P=0.043) or inferior occipital
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Table 2. Clinical scores of study participants.

Post-COVID-Condition Control Group (n=36)
(PCC; n=55)
median [IQR]; range; median [IQR]; range;
n outside of norm (%) n outside of norm (%) P-value
Disease severity score'’
Mild course of COVID-19 52 (95%) 35 (97%) 0.532
1 39 (71%) 23 (64%)
2 13 (24%) 12 (33%)
Severe course of COVID-19 3 (5%) 1 (3%)
3 3 (5%) 1(3%)
4 0 (0%) 0 (0%)
Grading of current disability? <0.0012
0 0 (0%) 36 (100%)
1 23 (41%) 0 (0%)
2 10 (19%) 0 (0%)
3 22 (40%) 0 (0%)
Current neurological symptoms
Impaired attention 55 (100%) 0 (0%)
Impaired concentration 55 (100%) 0 (0%)
Memory impairment 55 (100%) 0 (0%)
Impaired multi-tasking 54 (98%) 0 (0%)
Word-finding difficulties 46 (84%) 0 (0%)
Fatigue 54 (98%) 0 (0%)
Clinical readouts 27 [3]; 20-30; 17 (31%) 27 [3]; 23-30; 7 (19%) 0.06*
MoCA sum score (corrected for years of education; norm = 26/30)*
Correct perception of smell 10 [2]; 0-12; 31 (55%) 11 [2]; 8-12; 14 (39%) 0.014
(norm=11/12)
Wiirzburg Fatigue Inventory in Multiple Sclerosis score 46 [19]; 4-65; 43 (81%) 9[19]; 0-48; 4 (11%) <0.0014
(WEIMuS; norm: < 33/68)°- cognitive fatigue (norm: < 17/36) 25 [12]; 0-36; 41 (77%) 4 [11]; 0-24; 5 (14%) <0.0014
- physical fatigue (norm: < 16/32) 22 [8]; 4-32; 38 (72%) 3.5[11]; 0-9; 2 (6%) <0.0014
Geriatric Depression Scale 51[4]; 1-13; 13 (25%) 1[4]; 0-9; 1 (2%) <0.0014
(GDS-15; norm: < 7/15)°

'Disease severity score: (1) no pneumonia; (2) pneumonia, outpatient treatment; (3) pneumonia, inpatient treatment; (4) ARDS, endotracheal ventilation
at ICU; 2 Grading of current disability: (0) no relevant restrictions; (1) relevant restrictions of daily life activities but able to work; (2) reduction of work
quota necessary; (3) inability to work and restriction of daily life activities; ® data available only for n=54 patients; X2 test; * Mann-Whitney-U test; ° data
available only for n=53 patients.

https://doi.org/10.1371/journal.pone.0335038.t002

gyrus (P=0.043) and the total WEIMuS score (Fig 2). With respect to subscores, significant associations were present for
physical (right middle occipital gyrus P=0.033; right inferior occipital gyrus P=0.033), but not mental fatigue (right middle
occipital gyrus P=0.091; right inferior occipital gyrus P=0.091). No significant associations were present for MoCA- and
olfactory performance or the GDS-15 (all P>0.05).

Discussion

Here, we report clinical and cerebral perfusion data from a well-characterized prospective cohort of patients diagnosed
with Post-COVID-Condition (PCC). A significant inverse association was present between fatigue (assessed by the
WEIMuS-score) and CBF in the right middle and inferior occipital gyrus. In terms of subscores, this effect was more
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pronounced when physical rather than mental fatigue was examined. Thus, fatigue is linked to hypoperfusion of right-
sided occipital areas in PCC-patients. When compared to a control group of unimpaired individuals who had previously
contracted a COVID-19 infection, FreeSurfer-based analysis did not provide any detectable evidence of global or cortical
atrophy. Regarding regional CBF, no significant difference emerged between groups after FDR-correction for multiple
comparisons. However, when a more explorative threshold was applied (P<0.005), a reduction of CBF was found in the
right angular gyrus and the right middle occipital gyrus.

Regional CBF as a measure of tissue perfusion was examined in COVID-19 at different stages and in different pop-
ulations. Prior imaging in critically ill COVID-19 patients revealed bilateral frontotemporal perfusion deficits during the
acute phase. Similar findings were seen in later stages, though evidence remains inconsistent across studies [31]. This
pattern was confirmed in a larger cohort of 59 patients that were examined in the subacute phase (in average 3 weeks
after infection) after a severe course of disease [32]. However, alterations in functional connectivity revealed by resting
state functional MRI (rs-fMRI) in the frontal, temporal, and occipital lobes were still present after 6 months in a group of
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recovered patients after a moderate to severe course of COVID-19 [33]. Moreover, the feature of hypoperfusion in the
(sub)acute phase does not appear to be limited to patients with severe infection, as reduced CBF with a fronto-temporal
emphasis was detected in 28 patients with a mild course of disease when compared to controls [34]. Similar to patients
with severe disease, a CBF reduction (orbitofrontal cortex and subcortical structures) was still detectable 4-5 months after
mild COVID-19 infections [14]. In summary, infection with SARS-CoV-2 appears to lead to long-lasting changes in cerebral
perfusion regardless of initial disease severity.

Beyond this, ASL revealed altered cerebral perfusion in PCC compared with healthy controls: In 24 patients with
lasting cognitive complaints 6 months after infection, widespread hypoperfusion with emphasis on the frontal cortex
was identified [15]. Likewise, ongoing symptoms 4-5 months after COVID-19 were associated with altered functional
connectivity between temporal, parietal, occipital and subcortical regions in another study investigating PCC patients
[35]. These findings are in contrast to our study, which detected reduced regional CBF only at trend level within the right
angular and middle occipital gyrus. However, aforementioned populations were compared with healthy controls who had
not previously been infected with SARS-CoV-2. Since the infection alone can cause long-lasting changes in cerebral
tissue perfusion with emphasis on frontal lobes (see above), healthy controls are inadequate for differentiating character-
istics that are “PCC-specific” since they might be sequelae of the COVID-19 infection itself without a pathophysiological
link to PCC. For this reason, we compared perfusion data of PCC-patients with a well-defined cohort of subjects that had
contracted COVID-19 without lasting symptoms. Here, PCC-specific differences in regional perfusion were only present
using an exploratory threshold. However, a significant correlation between fatigue and hypoperfusion could be detected
for the right hemisphere in inferior and middle occipital areas. In line with this finding, reduced occipital perfusion was
observed associated with ongoing self-reported fatigue 4 months after mild COVID-19 [14]. Moreover, hypoperfusion of
distinct brain regions could be linked to symptoms in PCC, as an association of impaired olfaction was found with orbi-
tofrontal CBF reduction [16], and fatigue could be linked to left frontotemporal brain regions [17] and reduced thalamic
oxygen levels [36].

Interestingly, our observation of parieto-occipital hypoperfusion aligns with findings from studies on myalgic encephalo-
myelitis/chronic fatigue syndrome (ME/CFS) [37]. Here, ASL showed a reduced regional CBF at rest within right-
hemisphere occipital regions including the inferior occipital gyrus that was correlated with the level of self-reported fatigue
[38]. Moreover, a reduced Blood-Oxygenation-Level Dependent (BOLD)-signal as a measure of tissue perfusion in
response to a selective attention test has been described in the right medial occipital cortex [39]. The degree of hypoacti-
vation was also associated with outcomes in physical and mental health questionnaires. In addition to such a reduction of
perfusion, voxel-based morphometry revealed reduced grey matter volume in bilateral occipital areas in ME/CFS patients
[40] and cerebral proton magnetic resonance spectroscopy detected an increase in choline within the occipital cortex
in line with an abnormality of phospholipid metabolism [41]. Moreover, an involvement of the occipital lobe has been
described in fatigue in the context of diseases other than ME/CFS: In patients suffering from Crohn’s disease, grey matter
volumes in occipital areas were inversely correlated with fatigue scores [42] and significantly lower occipital
resting-state activity could be detected in patients with post-stroke fatigue [43]. Finally, the occipital cortex has been
shown to be involved in the evolution of task-induced fatigue [44,45]. Physiologically, the right middle occipital cortex is
a part of the dorsal visual stream [46] and has a role in spatial visual processing [47] whereas the inferior occipital cor-
tex is part of the ventral visual stream involved in spatial processing and face recognition [48]. Interestingly, fatigue and
increased fatigability are well-known phenomena in patients with cerebral visual impairment due to damage of the dorsal
and ventral visual stream [49,50]. Here, a compensatory activation and involvement of cortical areas outside of the occipi-
tal lobes has been discussed as a possible explanation [50].

A notable limitation of this study is its exclusive focus on cortical morphometry, without investigation of subcortical struc-
tures such as the thalamus and basal ganglia. This is particularly relevant given prior evidence of basal ganglia involve-
ment in post-COVID fatigue [51]. While we employed whole-brain cortical morphometry, including assessment of cortical
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thickness and surface area using FreeSurfer, this method is not feasible in deep gray matter structures. Consequently,
potential associations between subcortical alterations and fatigue may have been overlooked.

Conclusion

Fatigue, a key symptom of PCC, was related to a hypoperfusion of right-hemispheric occipital areas in a prospective
cohort of severely affected PCC-patients. This suggests a possible pathophysiological link between fatigue and hypoper-
fusion of right-hemispheric occipital areas.
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